资源类型

期刊论文 1472

年份

2024 5

2023 203

2022 195

2021 214

2020 124

2019 53

2018 48

2017 79

2016 61

2015 57

2014 56

2013 58

2012 34

2011 33

2010 57

2009 40

2008 28

2007 48

2006 8

2005 3

展开 ︾

关键词

SARS-CoV-2 7

微波散射计 5

COVID-19 4

Cu(In 4

HY-2 4

发展战略 4

生态文明 4

2型糖尿病 3

3D打印 3

GPS 3

Ga)Se2 3

HY-2 卫星 3

HY-2A卫星 3

光催化 3

可持续发展 3

微波辐射计 3

2035年 2

CCS 2

CO2利用 2

展开 ︾

检索范围:

排序: 展示方式:

Conversion of CO into CO by high active and stable PdNi nanoparticles supported on a metal-organic framework

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1139-1148 doi: 10.1007/s11705-021-2111-5

摘要: The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd+ Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution of PdNi nanoparticles, and lower dissociation and desorption barriers. Comparison of the catalysts synthesized by MIL-101(Cr) and MIL-101-NH2(Cr) as the supports of metals showed that Pd/MIL-101-NH2(Cr) outperforms Pd/MIL-101-(Cr) because of the higher electron density of Pd resulting from the electron donor ability of the NH2 functional group. However, the same activities were observed for Pd70Ni30/MIL-101(Cr) and Pd70Ni30/MIL-101-NH2(Cr), which is due to a less uniform distribution of Pd nanoparticles in Pd70Ni30/MIL-101-NH2(Cr) originated from amorphization of MIL-101-NH2(Cr) structure during the reduction process. In contrast, Pd70Ni30/MIL-101(Cr) revealed the stable structure and activity during reduction and CO oxidation for a long time.

关键词: CO oxidation     heterogeneous catalysis     metal-organic framework     NH2 functional group     PdNi    

CeO doping boosted low-temperature NH-SCR activity of FeTiO catalyst: A microstructure analysis and reaction

《环境科学与工程前沿(英文)》 2022年 第16卷 第5期 doi: 10.1007/s11783-022-1539-2

摘要:

• CeO2 doping significantly improved low-temperature NH3-SCR activity on FeTiOx.

关键词: NH3-SCR     CeO2 doping     Low-temperature NOx removal     Improved redox property     In situ XAFS analysis    

different acid anions on highly efficient Ce-based catalysts for selective catalytic reduction of NO with NH<sub>3sub>

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1399-1411 doi: 10.1007/s11705-023-2345-5

摘要: Three kinds of Ce-based catalysts (CePO4, CeVO4, Ce2(SO4)3) were synthesized and used for the selective catalytic reduction (SCR) of NO by NH3. NH3-SCR performances were conducted in the temperature range of 80 to 400 °C. The catalytic efficiencies of the three catalysts are as follow: CePO4 > CeVO4 > Ce2(SO4)3, which is in agreement with their abilities of NH3 adsorption capacities. The highest NO conversion rate of CePO4 could reach about 95%, and the catalyst had more than 90% NO conversion rate between 260 and 320 °C. The effect of PO43–, VO43– and SO42– on NH3-SCR performances of Ce-based catalysts was systematically investigated by the X-ray photoelectron spectroscopy analysis, NH3 temperature programmed desorption, H2 temperature programmed reduction and field emission scanning electron microscopy tests. The key factors that can enhance the SCR are the existence of Ce4+, large NH3 adsorption capacity, high and early H2 consumptions, and suitable microstructures for gas adsorption. Finally, CePO4 and CeVO4 catalysts also exhibited relatively strong tolerance of SO2, and the upward trend about 8% was detected due to the sulfation enhancement by SO2 for Ce2(SO4)3.

关键词: CePO4     CeVO4     Ce2(SO4)3     selective catalytic reduction     NO removal    

NH<sub>3sub>OH+/NH<sub>2sub>NH<sub>3sub>+作为B位阳离子的无金属六方钙钛矿含能材料 Article

尚宇, 余志鸿, 黄瑞康, 陈劭力, 刘德轩, 陈晓娴, 张伟雄, 陈小明

《工程(英文)》 2020年 第6卷 第9期   页码 1013-1018 doi: 10.1016/j.eng.2020.05.018

摘要: 文中通过合理地选择分子组分,经由易于规模放大的简单合成路线,以NH<sub>3sub>OH+NH<sub>2sub>NH<sub>3sub>+分别作为B位点阳离子构筑了两例无金属六方钙钛矿含能材料(H<sub>2sub>dabco)B(ClO<sub>4sub>)<sub>3sub>(分别命名为DAP-6和DAP-7,其中H<sub>2sub>dabco2+是1,4-二氮杂双环[2.2.2]辛烷-1,4-二鎓离子)。与基于NH<sub>4sub>+阳离子构筑的立方钙钛矿类似物(H<sub>2sub>dabco)(NH<sub>4sub>)(ClO<sub>4sub>)<sub>特别地,DAP-7具有超高热稳定性(起始分解温度T<sub>dsub> = 375.3 °C)、高爆速(D = 8.883 km·s

关键词: 含能材料     单质炸药     固体推进剂     无金属六方钙钛矿    

Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH-SCR

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 617-633 doi: 10.1007/s11705-022-2258-8

摘要: MnOx and Sm–Mn catalysts were prepared with the coprecipitation method, and they showed excellent activities and sulfur resistances for the selective catalytic reduction of NOx by NH3 between 50 and 300 °C in the presence of excess oxygen. 0.10Sm–Mn catalyst indicated better catalytic activity and sulfur resistance. Additionally, the Sm doping led to multi-aspect impacts on the phases, morphology structures, gas adsorption, reactions process, and specific surface areas. Therefore, it significantly enhances the NO conversion, N2 selectivity, and sulfur resistance. Based on various experimental characterization results, the reaction mechanism of catalysts and the effect of SO2 on the reaction process about the catalysts were extensively explored. For 0.10Sm–Mn catalyst, manganese sulfate and sulfur ammonium cannot be generated broadly under the influence of SO2 and the amount of surface adsorbed oxygen. The Bronsted acid sites strengthen significantly due to the addition of SO2, enhancing the sulfur resistance of the 0.10Sm–Mn catalyst.

关键词: MnOx     Sm–Mn     catalyst     NH3-SCR     sulfur resistance    

Characterization and performance of V

Caiting LI, Qun LI, Pei LU, Huafei CUI, Guangming ZENG

《环境科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 156-161 doi: 10.1007/s11783-010-0295-x

摘要: A series of CeO supported V O catalysts with various loadings were prepared with different calcination temperatures by the incipient impregnation. The catalysts were evaluated for low temperature selective catalytic reduction (SCR) of NO with ammonia (NH ). The effects of O and SO on catalytic activity were also studied. The catalysts were characterized by specific surface areas (S ) and X–ray diffraction (XRD) methods. The experimental results showed that NO conversion changed significantly with the different V O loading and calcination temperature. With the V O loading increasing from 0 to 10 wt%, NO conversion increased significantly, but decreased at higher loading. The optimum calcination temperature was 400°C. The best catalyst yielded above 80% NO conversion in the reaction temperature range of 160°C–300°C. The formation of CeVO on the surface of catalysts caused the decrease of redox ability.

关键词: V2O5/CeO2 catalysts     NH3-SCR (selective catalytic reduction)     the incipient impregnation     low temperatures    

Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1387-1398 doi: 10.1007/s11705-022-2154-2

摘要: UiO-66-NH2 is an efficient material for removing pollutants from wastewater due to its high specific surface area, high porosity and water stability. However, recycling them from wastewater is difficult. In this study, the cellulose nanofibers mat deacetylated from cellulose acetate nanofibers were used to combine with UiO-66-NH2 by the method of in-situ growth to remove the toxic dye, rose bengal. Compared to previous work, the prepared composite could not only provide ease of separation of UiO-66-NH2 from the water after adsorption but also demonstrate better adsorption capacity (683 mg∙g‒1 (T = 25 °C, pH = 3)) than that of the simple UiO-66-NH2 (309.6 mg∙g‒1 (T = 25 °C, pH = 3)). Through the analysis of adsorption kinetics and isotherms, the adsorption for rose bengal is mainly suitable for the pseudo-second-order kinetic model and Freundlich model. Furthermore, the relevant research revealed that the main adsorption mechanism of the composite was electrostatic interaction, hydrogen bonding and π–π interaction. Overall, the approach depicts an efficient model for integrating metal-organic frameworks on cellulose nanofibers to improve metal-organic framework recovery performance with potentially broad applications.

关键词: UiO-66-NH2     cellulose nanofibers     rose bengal     adsorption     mechanism    

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 38-46 doi: 10.1007/s11705-011-1167-z

摘要: An effective method for the regeneration of thermally deactivated commercial monolith SCR catalysts was investigated. Two types of regenerated solutions, namely NH Cl (1 mol/L) and dilute H SO (0.5 mol/L), were employed to treat the used catalyst. The effects of temperature and the regeneration process on the structural and textural properties of the catalysts were determined by X-ray diffraction, scanning electron microscopy, N adsorption/desorption, elemental analysis and Fourier transform infrared spectroscopy. The results suggest that the anatase phase of the used catalyst is maintained after exposure to high temperatures. Some of the catalytic activity was restored after regeneration. The catalyst regenerated by aqueous NH Cl had a higher activity than that of the catalyst treated by dilute H SO . The main reason is that the NH generated from the decomposition of NH Cl at high temperatures can be adsorbed onto the catalyst which promotes the reaction. The aggregated V O were partially re-dispersed during the regeneration process, and the intrinsic oxidation of ammonia with high concentrations of O is a factor that suppresses the catalytic activity.

关键词: V2O5-WO3/TiO2 catalysts     thermal deactivation     regeneration     NH4Cl     dilute H2SO4 solution    

NO hydrogenation to NH over FeCu/TiO catalyst with improved activity

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1973-1985 doi: 10.1007/s11705-023-2364-2

摘要: Ammonia is crucial in industry and agriculture, but its production is hindered by environmental concerns and energy-intensive processes. Hence, developing an efficient and environmentally friendly catalyst is imperative. In this study, we employed a straightforward and efficient impregnation technique to create various Cu-doped catalysts. Notably, the optimized 10Fe-8Cu/TiO2 catalyst exhibited exceptional catalytic performance in converting NO to NH3, achieving an NO conversion rate exceeding 80% and an NH3 selectivity exceeding 98% at atmospheric pressure and 350 °C. We employed in situ diffuse reflectance Fourier transform infrared spectroscopy and conducted density functional theory calculations to investigate the intermediates and subsequent adsorption. Our findings unequivocally demonstrate that Cu doping enhances the rate-limiting hydrogenation step and lowers the energy barrier for NH3 desorption, thereby resulting in improved NO conversion and enhanced selectivity toward ammonia. This study presents a pioneering approach toward energy-efficient ammonia synthesis and recycling of nitrogen sources.

关键词: NO hydrogenation     synthetic ammonia     10Fe-xCu/TiO2     high selectivity    

On the monolayer dispersion behavior of Co<sub>3sub>O<sub>4sub> on HZSM-5 support: designing applicable

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1741-1754 doi: 10.1007/s11705-023-2332-x

摘要: Based on monolayer dispersion theory, Co3O4/ZSM-5 catalysts with different loadings have been prepared for selective catalytic reduction of nitrogen oxides by ammonia. Co3O4 can spontaneously disperse on HZSM-5 support with a monolayer dispersion threshold of 0.061 mmol 100 m–2, equaling to a weight percentage around 4.5%. It has been revealed that the quantities of surface active oxygen (O2) and acid sites are crucial for the reaction, which can adsorb and activate NOx and NH3 reactants effectively. Below the monolayer dispersion threshold, Co3O4 is finely dispersed as sub-monolayers or monolayers and in an amorphous state, which is favorable to generate the two kinds of active sites, hence promoting the performance of ammonia selective catalytic reduction of nitrogen oxide. However, the formation of crystalline Co3O4 above the capacity is harmful to the reaction performance. 4% Co3O4/ZSM-5, the catalyst close to the monolayer dispersion capacity, possesses the most abundant active O2 species and acidic sites, thereby demonstrating the best reaction performance in all the samples. It is proposed the optimal Co3O4/ZSM-5 catalyst can be prepared by loading the capacity amount of Co3O4 onto HZSM-5 support.

关键词: Co3O4/ZSM-5     NOx-SCR by NH3     monolayer dispersion threshold effect     surface acid sites     surface active O2 anions    

Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS/ZnInS composite

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1566-z

摘要:

● An urchin-like OMS/ZIS composite was fabricated by a facile solvothermal method.

关键词: Dual-functional photocatalysts     Oxygen-doped MoS2/ZnIn2S4     H2 evolution     Organic pollutant    

Effects of functional groups for CO

Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 437-449 doi: 10.1007/s11705-020-1961-6

摘要: Metal organic frameworks (MOFs) are promising adsorbents for CO capture. Functional groups on organic linkers of MOFs play important roles in improving the CO capture ability by enhancing the CO sorption affinity. In this work, the functionalization effects on CO adsorption were systematically investigated by rationally incorporating various functional groups including –SO H, –COOH, –NH , –OH, –CN, –CH and –F into a MOF-177 template using computational methods. Asymmetries of electron density on the functionalized linkers were intensified, introducing significant enhancements of the CO adsorption ability of the modified MOF-177. In addition, three kinds of molecular interactions between CO and functional groups were analyzed and summarized in this work. Especially, our results reveal that –SO H is the best-performing functional group for CO capture in MOFs, better than the widely used –NH or –F groups. The current study provides a novel route for future MOF modification toward CO capture.

关键词: metal-organic frameworks     functional groups     CO2 capture     GCMC     DFT    

Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1674-4

摘要:

● Simultaneous NH4+/NO3 removal was achieved in the FeS denitrification system

关键词: Anammox     Denitrification     FeS     NH4+/NO3     Sulfammox    

Mechanism insight into the formation of HS from thiophene pyrolysis: A theoretical study

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1404-8

摘要:

• Possible formation pathways of H2S were revealed in thiophene pyrolysis.

关键词: Density functional theory     Waste rubber     Thiophene     H2S     Pyrolysis    

Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO hydrate: Adsorption

《环境科学与工程前沿(英文)》 2022年 第16卷 第8期 doi: 10.1007/s11783-022-1526-7

摘要:

• PANI/Ti(OH)n(4n)+ exhibited excellent adsorption capacity and reusability.

关键词: Polyaniline/TiO2     Chromium     Antimony     Adsorption     Desorption     Mechanism    

标题 作者 时间 类型 操作

Conversion of CO into CO by high active and stable PdNi nanoparticles supported on a metal-organic framework

期刊论文

CeO doping boosted low-temperature NH-SCR activity of FeTiO catalyst: A microstructure analysis and reaction

期刊论文

different acid anions on highly efficient Ce-based catalysts for selective catalytic reduction of NO with NH<sub>3sub>

期刊论文

NH<sub>3sub>OH+/NH<sub>2sub>NH<sub>3sub>+作为B位阳离子的无金属六方钙钛矿含能材料

尚宇, 余志鸿, 黄瑞康, 陈劭力, 刘德轩, 陈晓娴, 张伟雄, 陈小明

期刊论文

Denitrification performance and sulfur resistance mechanism of Sm–Mn catalyst for low temperature NH-SCR

期刊论文

Characterization and performance of V

Caiting LI, Qun LI, Pei LU, Huafei CUI, Guangming ZENG

期刊论文

Integrating of metal-organic framework UiO-66-NH2 and cellulose nanofibers mat for high-performance adsorption

期刊论文

Effective regeneration of thermally deactivated commercial V-W-Ti catalysts

Xuesong SHANG, Jianrong LI, Xiaowei YU, Jinsheng CHEN, Chi HE

期刊论文

NO hydrogenation to NH over FeCu/TiO catalyst with improved activity

期刊论文

On the monolayer dispersion behavior of Co<sub>3sub>O<sub>4sub> on HZSM-5 support: designing applicable

期刊论文

Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS/ZnInS composite

期刊论文

Effects of functional groups for CO

Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu

期刊论文

Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification

期刊论文

Mechanism insight into the formation of HS from thiophene pyrolysis: A theoretical study

期刊论文

Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO hydrate: Adsorption

期刊论文